ZELENA ENERGIJA

Nizkoogljični viri energije: kateri so najbolj učinkoviti?

printNatisnimessage1
V prizadevanjih za zmanjšanje izpustov toplogrednih plinov, predvsem CO2, se svet, zlasti Evropa, obrača k nizkoogljičnim virom električne energije, kot so sonce, veter, voda in jedrska energija. A čeprav je vsem tem virom skupno to, da imajo nizke emisije, so med njimi tudi precejšnje razlike. Predvsem z vidika varnosti, učinkovitosti, porabe prostora in zanesljivosti.

Podnebne spremembe silijo svet v prilagajanje, pri čemer bo po opozorilih znanstvenikov največ treba narediti glede izpustov CO2, ki nastajajo pri uporabi fosilnih goriv. Evropska unija si je zato zadala cilj, da doseže neto nič izpustov do leta 2050. To namerava doseči s postopnim opuščanjem fosilnih goriv in prehodom na obnovljive in nizkoogljične vire energije. Mednje sodijo sončna, vetrna, hidro in jedrska energija. 

Med tradicionalne fosilne vire pa uvrščamo nafto, premog in plin. Medtem ko sta premog in nafta odgovorna za ogromne emisije CO2 in drugih toplogrednih plinov, zemeljki plin pogosto velja za "čistejšo" izbiro, vendar še vedno prispeva k visokim emisijam CO2. Za razliko od fosilnih virov energije pa so pri nizkoogljičnih virih, kot so jedrska, sončna, vetrna, hidroenergija, emisije skoraj zanemarljive, saj pri proizvodnji električne energije ne nastajajo neposredni izpusti CO2. 

Električno omrežje
Električno omrežjeFOTO: Shutterstock

Se pa tudi nizkoogljični viri med seboj razlikujejo po učinkovitosti, porabi materialov in prostora, vplivu na okolje, razpoložljivosti električne energije in varnosti. Poglejmo, kakšne so glavne razlike med glavnimi nizkoogljičnimi viri energije.

Potreba po materialih

Pri nizkoogljičnih virih energije so potrebe po materialih zelo različne in so odvisne od tehnologije ter obsega proizvodnje. Materiali, kot so kovine, beton in steklo, se uporabljajo za gradnjo, vzdrževanje in obratovanje elektrarn. 

Vetrne elektrarne potrebujejo veliko količino materialov na enoto proizvedene energije, predvsem zaradi visokih stolpov in turbin. Glavni materiali za izgradnjo veternic so jeklo, beton, kompozitni materiali za lopatice turbin, bakrena ožičenja itd. Za gradnjo temeljev in stolpov je potrebno veliko betona in jekla, zlasti pri večjih turbinah ali morskih vetrnih elektrarnah.

Tudi hidroelektrarne potrebujejo ogromne količine materialov, predvsem betona in jekla, za gradnjo jezov in rezervoarjev. Vendar imajo tovrstne elektrarne zelo dolgo življenjsko dobo in nizke operativne stroške. Gradnja velikih hidroelektrarn zahteva ogromno gradbenih materialov in ima velik vpliv na okolje, a ko so enkrat zgrajene, lahko hidroelektrarne proizvajajo energijo desetletja brez večjih posodobitev.

Sončna elektrarna
Sončna elektrarnaFOTO: Dreamstime

Fotovoltaične (sončne) elektrarne zahtevajo precej več materialov na enoto proizvedene energije kot denimo jedrska ali hidroenergija, saj je sončna energija razpršena in potrebuje veliko površino. Glavni materiali za gradnjo sončnih elektrarn oziroma panelov so med drugim silicij, aluminij, steklo in redke kovine, kot so kadmij in indij. Poleg tega sta za montažne strukture potrebna tudi jeklo in aluminij. Solarni paneli se običajno zamenjajo na vsakih 25-30 letih, kar ustvari odpadke in potrebe po novih materialih.

V primerjavi s prej omenjenimi tipi elektrarn, potrebujejo jedrske elektrarne relativno majhno količino materialov na enoto proizvedene energije. Za gradnjo reaktorja in zaščitnih struktur je sicer potrebna velika količina jekla in betona, prav tako so potrebni tudi posebni materiali za gorivne palice. Vendar pa je poraba jekla, betona in drugih materialov na proizvedeni MWh električne energije precej manjša kot pri večini obnovljivih virov. Jedrske elektrarne imajo tudi razmeroma dolgo življenjsko dobo (40-60 let), kar pomeni, da se ti materiali uporabljajo učinkovito skozi daljše časovno obdobje.

Nuklearna elektrarna Krško

Uporaba prostora

Slovenija je majhna država, zato je učinkovita raba prostora izjemnega pomena. Če želimo s sončnimi elektrarnami in vetrnimi parki zagotoviti zadostno količino električne energije, bi potrebovali obsežne površine. 

Sončne elektrarne zahtevajo veliko površino za namestitev panelov. Vetrne elektrarne prav tako zasedejo veliko prostora, a se lahko zemljo okoli vetrnih turbin uporablja za kmetijstvo ali druge namene. 

Velike hidroelektrarne posegajo v reke in obrečni prostor. Zahtevajo ogromna območja za rezervoarje, kar vpliva na lokalne ekosisteme in prebivalce. Po drugi strani pa jedrske elektrarne zasedejo relativno majhen in omejen prostor, hkrati pa omogočajo izjemno visoko proizvodnjo energije na kvadratni meter.

Elektrarne na spodnji Savi
Elektrarne na spodnji SaviFOTO: Damjan Žibert

Razpoložljivost energije

Eden večjih izzivov pri sodobnih obnovljivih virih je nestalno in nezanesljivo zagotavljanje električne energije. Sončne elektrarne v Sloveniji delujejo v povprečju le 10 do 25 odstotkov ur v letu, kar pomeni, da jo je treba kombinirati z drugimi viri energije. 

Pri vetrnih parkih je razpoložljivost okoli 22 odstotkov časa v letu, kar je bolje kot pri sončnih elektrarnah, a je še vedno odvisna od vremenskih razmer.

Pri hidroenergiji je razpoložljivost pričakovano visoka, saj so rezervoarji sposobni shranjevati vodo in omogočajo neprekinjeno proizvodnjo energije. Razpoložljivost lahko doseže 40-60 odstotkov, odvisno od regije.

Jedrska elektrarna ima najvišji faktor razpoložljivosti, saj običajno obratuje 90–98 odstotkov ur v letu. Elektrika je na voljo vedno, ne glede na vreme ali čas dneva.

Zanesljivost omrežja

Zanesljivost slovenskega električnega omrežja je že sedaj na visoki ravni. Povprečno smo leta 2019 ostali brez elektrike le 1,72 ure na leto. Če bi v sistem dodali drugo jedrsko elektrarno (JEK2), bi se ta številka še zmanjšala na 0,147 ur letno. 

Toda, če bi večino energije pridobivali zgolj iz obnovljivih virov, bi lahko bili brez elektrike kar do 127 ur letno. Rešitev? Bodisi izgradnja plinske elektrarne, kar pa je v nasprotju s ciljem razogljičenja družbe, ali pa uvoz energije, s čimer bi bili odvisni od tujih držav.

Veterne turbine na Danskem
Veterne turbine na DanskemFOTO: Dreamstime

Varnost

Ko pomislimo na jedrsko energijo, se marsikdo najprej spomni na nesreče v Černobilu in Fukušimi. Vendar statistika kaže, da so nesreče jedrskih elektrarn redke in običajno povezane s proizvodnjo in vzdrževanjem opreme ter obvladovanjem jedrskih odpadkov.

Sončne in vetrne elektrarne so načeloma zelo varne, z zelo nizko smrtnostjo. Pri sončnih elektrarnah obstaja tveganje požara. Načeloma pa so nesreče pri obeh virih energije redke in običajno povezane s proizvodnjo in vzdrževanjem opreme.

PREBERI ŠE
Radioaktivni odpadki: koliko jih nastane in kam z njimi?

Tudi hidroelektrarne so relativno varne, a velike nesreče, kot so porušitve jezov, niso izključene in lahko povzročijo hude posledice ter uničijo cele vasi in mesta. 

Večina nesreč, povezanih s pridobivanjem električne energije, se dejansko zgodi pri fosilnih gorivih, ki so odgovorna za mnogo več smrti zaradi onesnaženja zraka in nesreč pri rudarjenju. Glede na število smrtnih žrtev na proizvedeno količino električne energije, pa je poleg hidro in vetrne energije, jedrska energija ena najvarnejših možnosti. 

Vsak nizkoogljični vir energije ima svoje prednosti in slabosti. Jedrska energija je zanesljiva in prostorsko učinkovita, a zahteva skrbno obravnavo varnostnih vprašanj in ravnanje z radioaktivnimi odpadki. Sončna in vetrna energija sta med najčistejšimi viri, vendar se soočata s težavami pri razpoložljivosti in prostorskih zahtevah. Hidroenergija ponuja visoko razpoložljivost, vendar z velikim vplivom na okolje. Za dolgoročno uspešno razogljičenje bo potrebna kombinacija teh virov, odvisno od specifičnih geografskih in družbenih okoliščin vsake posamezne države.










Sponzorirana objava